Uterine natural killer cell partnerships in early mouse decidua basalis

Allison M. Felker and B. Anne Croy

Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada

RECEIVED MAY 26, 2015; REVISED FEBRUARY 8, 2016; ACCEPTED FEBRUARY 23, 2016. DOI: 10.1189/jlb.1HI0515-226R

ABSTRACT

The decidual basalis of developing mouse implantation sites is highly enriched in CD45+ leukocytes. In intact, syngeneically mated C57BL/6 decidua basalis examined at gestation day 8.5 by whole-mount in situ immunohistochemistry, leukocyte, but not trophoblast, conjugations were reported. Nothing is known regarding time course, frequency, composition, or importance of physiologic decidual CD45+ cell pairing. In this study, we confirmed the presence of anti-CD54+/anti-CD11a+ immune synapses in CD45+ decidual cell conjugates and characterized their cellular heterogeneity. Conjugated cell pairs were virtually absent before implantation (virgin and gestation days 3.5 and 4.5), were infrequent at gestation day 5.5, but involved 19% of all CD45+ cells by gestation day 8.5, then declined. By gestation day 8.5, almost all CD45+ cells coexpressed CD31, and 2 CD45+CD31+ cells composed most conjugates. Conjugation partners were defined for 2 nonoverlapping uterine natural killer cell subsets (Ly49C/I+/Dolichos biflorus agglutinin lectin+ and Ly49C/I+/Dolichos biflorus agglutinin lectin-). Ly49C/I+ uterine natural killer cells were the major subset from before mating up to gestation day 6.5. At gestation day 5.5/6.5, uterine natural killer cell conjugates involving Ly49C/I+ cells were more abundant. By gestation day 8.5/9.5, Dolichos biflorus agglutinin lectin+ uterine natural killer cells were the dominant subset with Dolichos biflorus agglutinin lectin+/Dolichos biflorus agglutinin lectin- homologous conjugates and Dolichos biflorus agglutinin lectin+/Dolichos biflorus agglutinin lectin- heterologous conjugates dominating uterine natural killer cell pairings. At gestation day 6.5, both Ly49C/I+/CD45+ and Dolichos biflorus agglutinin lectin+/CD45+ heterologous conjugate pairs strongly engaged antigen-presenting cells (CD11c+, CD68+, major histocompatibility complex class II+). By gestation day 8.5, dominant partners of Ly49C/I+/CD45+ and Dolichos biflorus agglutinin lectin+/CD45+ heterologous conjugates are T cells (CD8<CD4+). Heterologous conjugates that did not involve uterine natural killer cells occurred but did not suggest antigen presentation to T cells. These data identify gestation day 6.5–8.5 in the pregnant mouse as a critical window for leukocyte interactions that may establish immune regulation within implantation sites. J. Leukoc. Biol. 100: 000–000; 2016.

Introduction

Endometrial decidualization accompanies embryo implantation in species with hemochorial placentaion, including humans and mice. Almost half the cells in the developing microdomain, called the decidua basalis, are CD45+ leukocytes, among which highly proliferative [1, 2] uterine NK cells are the most enriched, expanding cell lineage [3, 4]. Other leukocyte lineages within the decidua basalis are less frequent and stable in proportion between gd 5.5–9.5 [4]. Major MHCII+ APCs, macrophages, and DCs each represent ~15–20% of all CD45+ cells [4–8]. Less frequent leukocyte lineages include CD4+ and CD8+ T cells (<2% each) [4, 9].

Not only is the overall pattern of CD45+ cell frequency consistent over early pregnancy [4, 8], but predictable dynamic changes occur within lineage subsets. Histologically, 2 distinct subsets of uNK cells develop within the mouse decidua basalis that are distinguished by reactivity with DBA lectin. DBA+ and DBA− uNK cells appear to be functionally distinct [10–12] and differ from circulating NK cells, because their differentiation is independent of the transcription factor NFIL3 (E4BP4) [13] (unpublished results). Flow cytometry of decidual cell suspensions identified multiple uNK cell subsets. In mice of C57BL/6 (B6) background, CD122+ uNK cell subsets can be distinguished by their reactivity with NK1.1 and DBA. NK1.1+CD122+DBA− uNK cells appear to be unique to the decidua and are functionally biased toward regulation of angiogenesis [10, 14, 15]. They are absent from virgin and preimplantation uteri (implantation occurs at gd 4.0–4.5 in mice) [16–18]. Uterine NK1.1+CD122+DBA− cells are present before implantation and decidualization [18, 19], are more similar to splenic NK cells [11], and produce most of the IFN-γ found in the decidua basalis [10, 20]. IFN-γ is critical for physiologic modification of maternal spiral arteries, a process
completed between gd 9.5–12.5 in mice [20, 21]. Spiral arteries are the major conduits that bring nutrient-rich maternal blood toward the placental labyrinth, the maternal-fetal exchange area within the placenta that is present from gd 10.5 onward [22, 23].

Although many researchers have postulated that uNK cells interact with placentally derived trophoblasts that invade the maternal decidua basalis during its development [24, 25], our studies of live, intact implantation sites at the time of implantation and early afterward (gd 4.5–8.5) do not support that hypothesis [4]. Study of hemisected implantation sites from murine matings by WM-IHC, which tagged all conceptus-derived cells with GFP, showed that leukocyte interactions with trophoblasts did not occur before gd 9.5 [4]. At gd 9.5, anti-CD45⁺ stained cell interactions with GFP⁺ fetal cells represented <0.35% of the total visualized CD45⁺ cell interactions; CD45⁺/CD45⁺ cell pairings were dominant [4, 26]. Because many decidual CD45⁺ cells are highly proliferative [2, 27, 28], CD45⁺/CD45⁺ cell pairs could represent cell division. However, the first 5 d after implantation is also the time frame when immune interactions can be expected that would result from recognition of posthatching and -implantation conceptus-derived antigens.

Leukocyte activation results from prolonged intervals of contact between cells that form an immunologic synapse [29–31]. Such conjugations, as observed between T cells and APCs or NK cells and their targets, are maintained by cell adhesion molecules that include the LFA (ITGB2, CD11a, formerly LFA-1) and ICAM-1 (CD54). Concentric adhesion rings form at the points of cell contact and give synapses their characteristic flattened appearance [29, 31–35]. Herein, we report our study of CD45⁺ cell conjugation in live hemisected virgin and gd 3.5–9.5 B6 mouse uteri. Time course, frequency, and identity of CD45⁺ cells interacting with DBA⁺ and DBA⁺ uNK cell subsets are included.

MATERIALS AND METHODS

Mice

B6 males and females were purchased at 7–10 wk of age from Charles River Laboratories (St.-Constant, QC, Canada). CByJ.B6-Tg(UBC-GFP)30Scha/J (Gfp⁺⁺) mice, with ubiquitous GFP expression, were purchased from The Jackson Laboratory (Bar Harbor, ME, USA) and bred to be homozygous Gfp/Gfp at Queen’s University. CByJ.B6-Tg(UBC-GFP)30Scha/J (Gfp⁺⁺) or B6 males were used as studs to breed B6 females. Matings were timed from copulation plug detection (gd 0.5). Females (virgin or pregnant at gd 3.5, 4.5, 5.5, 6.5, 8.5, or 9.5; n = at least 3 per group) were euthanized by cervical dislocation. Mouse handling was in accordance with the guidelines of the Canadian Council on Animal Care and conducted under animal care protocols approved by Queen’s University.

WM-IHC

Implantation sites were studied using WM-IHC as described elsewhere [4]. Any sporadic, abnormally pale, or small implantation sites were excluded from the study. In brief, virgin and gd 3.5–9.5 pregnant uteri were trimmed of mesenteric fat and dissected under microscopic magnification with a scalpel blade. Virgin, and gd 3.5 and 4.5 uteri were bisected at the cervix, and each uterine horn was halved longitudinally along the antimesometrial-mesometrial plane. At gd 5.5, individual implant sites were separated, and each was bisected mid sagittally. From gd 6.5 to 9.5, antimesometrial myometrium was incised with fine forceps, retracted from the decidual capsule and trimmed off, leaving a tag of uterine wall for specimen orientation. Then, the decidual capsule and residual mesometrial uterine wall were bisected mid sagittally. Samples were incubated in 200 μl PBS-1% BSA-0.1% sodium azide (PBA) for 1 h with 10 μg/ml blocking antibody to the IgG Fc receptor (anti-CD16/CD32; supernatant of hybridoma 2.4G2; American Type Culture Collection, Manassas, VA, USA) and 2–10 μg/ml of up to 3 differently conjugated fluorescent primary antibodies (Table 1). For staining with DBA lectin, implantation sites were transferred to 200 μl fresh PBA after the initial 1 h incubation and incubated for a further 10 min with 30 μg/ml FITC- or 15 μg/ml TRITC-conjugated DBA lectin. All antibody combinations are outlined in Table 2. Finally, 1 ml PBA was added, and samples were moved onto microscope slides with the cut surface facing upward to expose the embryonic crypt and covered slipped. The slides were viewed by epifluorescence microscopy and photographed with an AxioCam-equipped M1 imager (Zeiss, Toronto, ON, Canada) with Axiovision 4.8 software or a Quorum Wave FX Spinning Disc confocal microscope equipped with Metamorph software (Quorum, Guelph, ON, Canada). Different antibody staining combinations were used to study littermates, except at gd 5.5/6.5, when several implantation sites were needed from each litter to provide a sufficient number of conjugates for analysis.

Conjugate assessment

Epifluorescence images captured at ×200 magnification were analyzed for leukocyte conjugates. Leukocyte–leukocyte pairs were scored as conjugates when 2 CD45⁺ cells were in close contact, in the same plane of focus, and the cells’ membranes were flattened at the point of intercellular contact (Fig. 1A). Occasional clusters of CD45⁺ leukocytes were observed in the decidua basalis but were not counted as conjugates, because the cells comprising them were in different planes of focus and lacked flattened surfaces indicative of cell contact. For pairs scored as conjugates, at least 50 CD45⁺ cell pairs were counted for each specific antibody combination in uteri (virgin, and gd 3.5–4.5) or implantation sites (gd 5.5–9.5) from 3 different mice. Each cell of a conjugated pair was scored for antibody reactivity. Conjugates were of 2 primary types: homologous conjugates consisting of 2 CD45⁺ cells that shared expression of the surface marker of interest or heterologous conjugates consisting of 2 CD45⁺ cells that did not share the surface marker of interest.

Immunohistochemistry

Implantation sites collected from gd 8.5 B6 females (n = 3) were immersion fixed, using 4% PFA, processed, embedded in paraffin, cut into 6 μm sections, and mounted on glass slides. After staining (outlined below), the slides were viewed with an M1 imager and photographed at ×400 magnification with Axiovision 4.8 software (Zeiss).

Dual staining of paraffin-embedded tissue sections with DBA lectin and PAS reagent. Slides were stained for uNK cell subset visualization according to published protocols for DBA lectin and PAS dual staining [12, 18]. Cell phenotypes in the decidua basalis were scored based on PAS reactivity (all uNK cells) and DBA reactivity (unique decidual uNK cells) to identify the PAS⁺DBA⁺ (purple) or PAS⁻DBA⁺ (brown) uNK cell lineages.

Detection of apoptosis by TUNEL staining. For detection of apoptosis and nuclear fragmentation in implantation sites, TUNEL staining was conducted according to the protocol provided with the TACS2 TdT-DAB In Situ Apoptosis Detection Kit (cat. no. 4810-30 K. Trevigen, Gaithersburg, MD, USA).

Statistical analyses

Statistical significance for conjugated cell counts was assessed by Student’s t test or 1-way ANOVA with Tukey’s multiple-comparison post hoc test. Significance was set at P < 0.05. Data are expressed as means ± so. Statistical analysis was performed with Prism® Software (GraphPad Software, Inc.).
TABLE 1. Antibodies used for WM-IHC

<table>
<thead>
<tr>
<th>Primary antibody</th>
<th>Fluorochrome</th>
<th>Company</th>
<th>Antibody concentration</th>
<th>Working concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-mouse CD4</td>
<td>APC</td>
<td>Affymetrix, Santa Clara, CA, USA</td>
<td>0.2 mg/ml</td>
<td>3–4 μg/ml</td>
</tr>
<tr>
<td>Anti-mouse CD8a</td>
<td>PE</td>
<td>BioLegend, San Diego, CA, USA</td>
<td>0.2 mg/ml</td>
<td>3–4 μg/ml</td>
</tr>
<tr>
<td>Anti-mouse CD8a</td>
<td>APC</td>
<td>BioLegend</td>
<td>0.2 mg/ml</td>
<td>3–4 μg/ml</td>
</tr>
<tr>
<td>Anti-mouse CD11c</td>
<td>PE</td>
<td>Affymetrix</td>
<td>0.2 mg/ml</td>
<td>3–4 μg/ml</td>
</tr>
<tr>
<td>Anti-mouse CD11a</td>
<td>PE</td>
<td>BioLegend</td>
<td>0.2 mg/ml</td>
<td>3–4 μg/ml</td>
</tr>
<tr>
<td>Rat anti-mouse CD31</td>
<td>FITC</td>
<td>BD Pharmingen, San Diego, CA, USA</td>
<td>0.2 mg/ml</td>
<td>4 μg/ml</td>
</tr>
<tr>
<td>Anti-mouse CD45</td>
<td>FITC</td>
<td>BioLegend</td>
<td>0.5 mg/ml</td>
<td>10 μg/ml</td>
</tr>
<tr>
<td>Anti-mouse CD45</td>
<td>FITC</td>
<td>BioLegend</td>
<td>0.5 mg/ml</td>
<td>7.5 μg/ml</td>
</tr>
<tr>
<td>Anti-mouse CD54</td>
<td>FITC</td>
<td>BioLegend</td>
<td>0.5 mg/ml</td>
<td>7.5 μg/ml</td>
</tr>
<tr>
<td>Anti-mouse CD68</td>
<td>PE</td>
<td>BioLegend</td>
<td>0.2 mg/ml</td>
<td>3–4 μg/ml</td>
</tr>
<tr>
<td>Anti-mouse Ly49C</td>
<td>PE</td>
<td>BD Pharmingen</td>
<td>0.2 mg/ml</td>
<td>3–4 μg/ml</td>
</tr>
<tr>
<td>Anti-mouse Ly49I</td>
<td>PE</td>
<td>BD Pharmingen</td>
<td>0.1 mg/ml</td>
<td>2 μg/ml</td>
</tr>
<tr>
<td>DBA lectin</td>
<td>FITC</td>
<td>Vector Laboratories, Burlingame, CA, USA</td>
<td>2 mg/ml</td>
<td>30 μg/ml</td>
</tr>
<tr>
<td>DBA lectin (horse gram)</td>
<td>TRITC</td>
<td>EY Laboratories, San Mateo, CA, USA</td>
<td>1 mg/ml</td>
<td>15 μg/ml</td>
</tr>
</tbody>
</table>

RESULTS

Assessment of synapse formation in CD45+ leukocyte conjugates within gd 8.5 decidua basalis

In studies with anti-CD45 WM-IHC, CD45+ cells in gd 8.5 decidua basalis of B6 and B6.NeFt(+/−) mice were shown to pair with other CD45+ cells rather than with trophoblasts [26]. CD45+/CD45+ cell pairs were in the same plane of focus, and each cell was flattened over shared points of contact, which fluoresced more intensely. This appearance (Fig. 1A, B) suggested immunologic synapse formation. To confirm this interpretation, we examined implant sites costained with anti-CD45 APC, anti-CD54 FITC, and anti-CD11a PE antibodies with confocal microscopy. All of the CD45+ cells participating in conjugation expressed either CD54 or CD11a (65% of all conjugates) or expressed both CD54 and CD11a (35% of all conjugates) at the site of cell contact (Fig. 1A). These data indicate that the observed CD45+/CD45+ cell conjugates are adhesion molecule-expressing, immune synapse-coupled cells.

Time course and frequency of CD45+/CD45+ cell conjugates in the decidua basalis

To address when CD45+/CD45+ cell conjugates occur and whether their frequencies are stable, we conducted a time course study in virgin and pregnant mice from gd 3.5 to 9.5. CD45+/CD45+ conjugates were extremely rare in virgin and gd 3.5 and 4.5 uteri (1.4 ± 0.5, 1.5 ± 0.1, and 1.9 ± 0.1%, respectively, of all CD45+ cells counted; at least 500 CD45+ cells scored/uterus), but increased slightly to 3.3 ± 0.8% on gd 5.5, the first day after embryoblast implantation (Fig. 1C). After implantation, conjugated cells (Fig. 1B) were present only in decidua basalis and were never observed in lateral or amnion-metrial decidua. The frequency of CD45+/CD45+ cell conjugates increased significantly from virgin and gd 3.5–5.5 values to 7.8 ± 1.0% by gd 6.5 (P < 0.001). The frequency of CD45+/CD45+ conjugates reached its peak at gd 8.5 (19.0 ± 1.8% all CD45+ cells) then fell to 9.8 ± 1.6% by gd 9.5 (Fig. 1C). CD45+ leukocytes increased in diameter across early gestation, regardless of conjugation status. Thus, CD45+/CD45+ leukocyte conjugates present in low numbers in virgin, preimplantation, and peri-implantation uteri, increase significantly in frequency within 24 h of blastocyst implantation and decline in frequency after gd 8.5.

CD31-expressing CD45+ leukocytes are present across early gestation

CD31, an adhesion molecule of the immunoglobulin gene superfamly formerly known as platelet endothelial cell adhesion molecule-1 is expressed by endothelial cells, platelets, and some immune cells [36]. In lymphocytes, CD31 expression is linked to cell activation, inhibition, promotion of transmigration, and angiogenesis [37–39]. Widespread CD31 expression by decidual CD45+ cells is detectable by

TABLE 2. Antibody combinations used in WM-IHC

<table>
<thead>
<tr>
<th>Antibody 1</th>
<th>Antibody 2</th>
<th>Antibody 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD45 APC</td>
<td>DBA FITC</td>
<td>CD8 PE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD11c PE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD31 PE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD68 PE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ly49c/1 PE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MHCI PE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD8 PE</td>
</tr>
<tr>
<td>CD45 APC</td>
<td>Ly49 FITC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD11c PE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD68 PE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MHCI PE</td>
</tr>
<tr>
<td>CD45 FITC</td>
<td>CD11c PE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD31 FITC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD31 APC</td>
</tr>
<tr>
<td>CD45 APC</td>
<td>Ly49c/1 PE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DBA TRITC</td>
</tr>
<tr>
<td>CD45 APC</td>
<td>CD54 FITC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD11a PE</td>
</tr>
</tbody>
</table>

CD31-expressing CD45+ leukocytes are present across early gestation

CD31, an adhesion molecule of the immunoglobulin gene superfamly formerly known as platelet endothelial cell adhesion molecule-1 is expressed by endothelial cells, platelets, and some immune cells [36]. In lymphocytes, CD31 expression is linked to cell activation, inhibition, promotion of transmigration, and angiogenesis [37–39]. Widespread CD31 expression by decidual CD45+ cells is detectable by
WM-IHC and dually expressing CD45+CD31+ cells contribute to conjugates [4, 26]. To determine whether CD31 expression is a prerequisite for decidual CD45+ cell conjugation, implantation sites were costained with anti-CD45 APC and anti-CD31 PE; the latter additionally stained endothelial cells within vessels, which become more complex as gestation progresses. Conjugated and unconjugated decidual leukocytes coexpress CD31+CD45+ on the postimplantation gestation day studied (gd 5.5–9.5) (Fig. 2A; Supplemental Fig. 1). When all CD45+ cells were considered, regardless of conjugation status, 47.3 ± 9.1% of gd 5.5 leukocytes coexpressed CD31. Frequencies of CD45+ cells coexpressing CD31 increased significantly between gd 5.5 and 6.5 (76.7 ± 5.1%) and remained stable at gd 8.5 (89.3 ± 0.6%) and gd 9.5 (80.7 ± 5.0%; ns; Fig. 2B).

When separated by conjugation status, the proportion of unconjugated CD45+CD31+ cells was stable over early gestation. Over the same interval, proportions of conjugated CD45+CD31+ cells changed (Fig. 2C). Most of these partnerships involved 2 phenotypically identical CD45+CD31+ cells, referred to as homologous conjugates. Fewer conjugates were heterologous (i.e., occurred between a CD45+CD31+ cell and a CD45−CD31− cell; Fig. 2D). At gd 5.5, 6.0 ± 3.0% of conjugated CD45+ leukocytes involved at least 1 CD45−CD31− cell. This percentage increased to 29.3 ± 5.8% at gd 6.5, peaked 44.7 ± 7.4% at gd 8.5, and declined to 31.5 ± 11.9% at gd 9.5 (Fig. 2C). Thus, the time course pattern of conjugation for CD45+CD31+ cells resembles that observed for CD45+/CD45− cell conjugate frequencies (Fig. 1C) and CD31 expression neither prevents nor is necessary for decidual CD45+ cell pairing.

Two distinct uNK cell populations can be defined by WH-IHC in early decidua basalis

To assign lineage relationships among cells participating in conjugate formation and to determine whether these interactions are random, we had to define the frequencies of the most common CD45+ cell lineages in decidua basalis that could be phenotyped by WH-IHC. We expected uNK cells to be the dominant lineage but only had reagents for WM-IHC that identified DBA lectin+ uNK cells, the transplantable uNK cell subset [12]. Studies were first undertaken to identify reagents reactive with the early, abundant PAS+DBA− uNK cell subset found in histologic sections (Fig. 3A). The gd 8.5 implant sites were used because both uNK cell subsets (PAS+DBA−; PAS+DBA+) are found at high abundance in histologic sections at this time. NK1.1, an NK cell marker commonly used for flow cytometry of B6 lineage mice, worked well in WM-IHC, although it is not a useful reagent for staining histologic sections. NK1.1+ reactivity was seen on 8,1% of DBA+ cells in WM-IHC (Fig. 3B). Ly49C/I, a uNK cell receptor classi ed as having inhibitory activity, was also non-reactive on DBA+ uNK cells. Triple staining with DBA and both of the possible DBA− uNK cell markers revealed that, of DBA− cells, 72% dually expressed NK1.1 and Ly49C/I (Fig. 3B). Minor DBA− uNK cell subsets were also observed that exclusively expressed either NK1.1 or Ly49C/I. Although either marker seemed suitable for identification of the DBA− uNK cell subset using WM-IHC, anti-Ly49C/I was chosen because background
fluorescence was much lower than when anti-NK1.1 was used (unpublished observations).

Ly49C/I+ uNK cells were present at a stable frequency before conception (virgin: 10.7 ± 1.5%) and throughout the peri-implantation period (gd 3.5: 12.0 ± 1.7%; gd 4.5: 13.7 ± 3.2%). The DBA+ subset was absent at these times. DBA+ uNK cells appeared in the decidua basalis on gd 5.5, but were less frequently present than Ly49C/I+ cells (7.0 ± 1.7% vs. 23.7 ± 6.1% of total CD45+ cells; \(P < 0.001 \)). Ly49C/I+ cells increased significantly in frequency between gd 4.5 and 5.5 (\(P = 0.008 \)). By gd 6.5, the frequencies of both Ly49C/I+ cells and DBA+ cells had increased within decidua basalis with Ly49C/I+ cells remaining statistically dominant (Ly49C/I+: 32.7 ± 3.1% vs. DBA+: 17.0 ± 3.4%; \(P = 0.001 \)). By gd 8.5, DBA+ uNK cells represented half of all CD45+ decidual cells (49.0 ± 8.7%), whereas Ly49C/I+ uNK cell frequency was 20.3 ± 5.5%, a statistically significant drop from gd 6.5 (\(P = 0.01 \)). At gd 9.5 DBA+ uNK cell frequency remained higher than Ly49C/I+ uNK cell frequency (43.5 ± 6.2% vs. 20.5 ± 5.0%, respectively; \(P = 0.005 \)) (Fig. 3C). Thus, Ly49C/I+ cells in WM-IHC showed the same dynamic pattern as that reported for PAS+DBA+ uNK cells in tissue sections [12] and is the dominant NK cell subset in decidua basalis up to gd 8.5. At gd 8.5, summation of cells expressing Ly49C/I or DBA provides a uNK cell estimate of ~70% of all CD45+ decidual cells, a value similar to that reported for early human decidua.

Conjugate formation by Ly49C/I+ and DBA+ uNK cell subsets

PAS− DBA− and PAS+ DBA+ uNK cells have been identified in very close proximity in PAS and DBA dually stained tissue sections from early mouse implant sites (Fig. 3A), but this method is inferior to live cell WH-IHC for recognition and quantification of conjugated cell pairs (Fig. 3D). Thus, the frequency of conjugates involving Ly49C/I+ or DBA+ uNK cells was addressed by WM-IHC. Ly49C/I+ homologous conjugates, which could represent dividing cells, were present in a small number in virgin (2.2 ± 1.9% of all CD45+ cell conjugates) and in gd 3.5 (2.5 ± 3.8%) uteri (Fig. 4A). These conjugates increased nonsignificantly to gd 4.5 (5.6 ± 1.9%) and gd 5.5 (10.0 ± 2.0%) and then rose significantly to peak at gd 6.5 (16.6 ± 8.4% of all CD45+ cell conjugates). After this time, Ly49C/I+ homologous conjugates declined significantly to...
peri-implantation levels at gd 8.5 (4.0 ± 3.3%) and gd 9.5 (4.0 ± 0.0%). Ly49C/I+ uNK cells also conjugated with CD45+ cells that were nonreactive for Ly49C/I+ (heterologous conjugates). Ly49C/I+ heterologous conjugates represented 15.6 ± 5.1% of all CD45+ cell conjugates in the virgin uterus and 21.1 ± 5.1% of cell conjugates at gd 3.5 (Fig. 4B). The number of Ly49C/I+ heterologous conjugates rose significantly at gd 4.5 (34.4 ± 6.9%) and remained constant at gd 5.5 (26.0 ± 3.5%) and gd 6.5 (34.7 ± 4.2%), before declining at gd 8.5 (20.0 ± 3.3%; P < 0.001 vs. gd 6.5) and gd 9.5 (18.7 ± 1.2%; P = 0.003 vs. gd 6.5, P = 0.537 vs. gd 8.5).

DBA+ uNK cells were absent in virgin and gd 3.5 and 4.5 uteri (Figs. 3C, 4C, 4D). At gd 5.5, DBA+ uNK cells were found in 6.0 ± 2.8% of all CD45+/CD45+ cell pairs, but were never observed as

Figure 3. Detection and frequencies of 2 uNK cell subsets in early C57BL/6 decidua basalis. (A) DBA/PAS dual staining of paraffin-embedded sections show PAS+DBA+ (purple, white arrow) and PAS+DBA− (brown, yellow arrow) uNK cells in close proximity. (B) WM-IHC triple staining with anti-NK1.1 APC (blue), anti-Ly49C/I PE (red), and DBA lectin FITC (green). Little overlap was observed between anti-NK1.1 or anti-Ly49C/I and DBA lectin expression. Ly49C/I- cells represent the DBA- subset of uNK cells. (C) Examination of Ly49C/I and DBA lectin expression by CD45+ leukocytes. Ly49C/I+ uNK cells were dominant before implantation and early in gestation (gd 5.5 and 6.5). DBA+ uNK cells were not present before implantation but overtook Ly49C/I+ uNK cells in frequency at gd 8.5. Data are means ± so. *P < 0.01, **P < 0.001. (D) WM-IHC of anti-CD45 APC (blue), anti-Ly49 PE (red), and DBA lectin FITC (green) revealed conjugate formation between Ly49C/I+ and DBA+ uNK cells (circled in yellow).

Figure 4. UNK cell subsets contribute to CD45+ leukocyte conjugates in early C57BL/6 decidua basalis. (A) Ly49C/I+ uNK cells in homologous conjugates in virgin and gd 3.5–9.5 uteri. (B) Ly49C/I+ uNK cells in heterologous conjugates in virgin and gd 3.5–9.5 uteri. (C, D) DBA+ uNK cells were not present in preimplantation uteri but were common in homologous conjugates (C) at gd 8.5 and 9.5. (D) DBA+ uNK cell heterologous conjugates were initiated at gd 5.5 and increased from gd 6.5 to 8.5 as the number of DBA+ uNK cells increased. Data are means ± so. One-way ANOVA results are shown at the top of each graph. Letters indicate significance of Tukey’s multiple comparison post hoc test between the time points.
DBA+/DBA+ homologous conjugates (Fig. 4C, D), suggesting that DBA+ cells had migrated into or differentiated within the uterus, but cell division had not commenced. By gd 6.5, DBA+/DBA+ homologous conjugates represented 1.4 ± 1.5% of all CD45+ cell conjugates, whereas heterologous DBA+/CD45+/DBA-CD45- conjugates represented 18.3 ± 6.6%. Between gd 6.5 and 8.5, DBA+/DBA+ homologous conjugates increased to 14.8 ± 5.9% (P < 0.001 vs. gd 6.5), whereas DBA+ heterologous conjugates increased to 36.9 ± 5.2% (P < 0.001 vs. gd 6.5). DBA+ uNK cells were therefore incorporated into more than half of all gd 8.5 CD45+ cell conjugates, and this frequency was similar at 9.5 (homologous: 13.0 ± 7.2%, P = 0.541; 35.3 ± 9.0%, P = 0.596 vs. gd 8.5).

Composition of uNK cell conjugates at gd 6.5 and 8.5

Because heterologous conjugates containing a single Ly49C/I+ or DBA+ uNK cell or a single DBA+ uNK cell are relatively abundant at gd 6.5 and 8.5, these time points were studied further to identify the CD45+ partners of uNK cells. Preliminary studies defined the frequencies of 5 leukocyte lineages detectable by WM-IHC (Fig. 5). APCs reactive with MHCII antibodies were constant in frequency between gd 6.5 (12.0 ± 1.7%) and 8.5 (12.7 ± 0.6%; P = 0.561), as were the frequencies of CD68+ decidual macrophages (6.0 ± 1.4% at gd 6.5 and 6.0 ± 0.0% at gd 8.5; P = 0.99). A third group of potential APCs, CD11c+ DCs, appeared to decrease between gd 6.5 (19.5 ± 6.0%) and 8.5 (10.3 ± 3.1%), but the decrease was not statistically significant (P = 0.062). T lineage cells were less frequent than APCs, with CD8+ cells accounting for 7.0 ± 2.0% and 7.0 ± 1.7% of all CD45+ cells at gd 6.5 and 8.5, respectively (P = 0.99). CD4+ T cells represented 5.3 ± 1.2% of CD45+ cells at gd 6.5 and 8.7 ± 2.9% at gd 8.5 (P = 0.137). Thus, with the exception of Ly49C/I+ and DBA+ uNK cells, major CD45+ decidual leukocyte populations appear to be stable between gd 6.5 and 8.5 (Fig. 5).

Heterologous conjugation of cells expressing one of the 5 surface markers with either Ly49C/I+ or DBA+ uNK cells was assessed in samples costained for anti-CD45, anti-Ly49C/I, or DBA lectin and a third reagent (Table 2; Fig. 6). The 2 uNK cell subtypes were primary partners for each other in heterologous conjugates, with 1 cell identified as either Ly49C/I+ or DBA+ (Figs. 3D, 7). Ly49C/I+/DBA+ pairs formed 26.7 ± 11.5% of heterologous uNK cell conjugates at gd 6.5 (Fig. 7A). At gd 6.5, Ly49C/I+ or DBA+ uNK cells were conjugated with MHCII+ cells (19.0 ± 12.3% and 13.5 ± 18.0%, respectively), CD11c+ DCs (26.8 ± 7.8% and 14.4 ± 18.1%, respectively), and CD68+ decidual macrophages (10.7 ± 2.5% and 12.5 ± 10.3%, respectively) (Figs. 6A–C, 7A). Conjugation with CD8+ cells was more limited for both Ly49C/I+ (4.7 ± 4.2%) and DBA+ (3.7 ± 6.4%) uNK cells. No conjugates were detected with CD4+ T cells for either uNK cell subset at gd 6.5 (Fig. 7A) (CD3 is not an effective reagent in mouse decidual WM-IHC.) There were no significant differences between Ly49C/I+ or DBA+ uNK cells in the frequencies of different heterologous conjugates formed at gd 6.5 (Fig. 7A).

At gd 8.5, conjugations between the 2 uNK cell subsets represented 24.9 ± 6.7% of all heterologous uNK cell conjugates (Fig. 7B). This frequency was not significantly different from that...
respectively, and those with CD68+ cells were 5.9 ± 5.2% (P = 0.004 vs. gd 6.5) and 12.5 ± 4.0% of DBA+ conjugates (P = 0.006 vs. gd 6.5) (Fig. 7B). TUNEL staining of tissue sections from gd 8.5 implantation sites revealed no evidence of apoptosis in stromal cells or leukocytes within the decidua basalis (Supplemental Fig. 2), suggesting that heterologous leukocyte conjugations in the early decidua do not result in cell death.

gd 6.5 and 8.5 CD45+ cell conjugates independent of uNK cells

As suggested by the stability of other phenotyped leukocyte lineages within gd 6.5 and 8.5 decidua (Fig. 5), no homologous conjugates (putative proliferating cells) were observed between CD4+, CD8+, and CD68+ cells at gd 6.5. MHCII+ and CD11c+ homologous conjugates were present at low frequencies (0.5 ± 1.0% and 0.7 ± 1.2%, respectively). At gd 8.5, CD8+ and CD68+ homologous conjugates were still absent, MHCII+ homologous conjugates remained low (0.5 ± 0.9%), and CD11c+ homologous conjugate frequency was 2.0 ± 2.0% (P = 0.374 vs. gd 6.5). CD4+ homologous conjugates appeared at a frequency of 0.7 ± 1.2% of all CD45+ conjugates accounting for the slight but nonsignificant increase in CD4+ leukocytes between gd 6.5 and 8.5.

The cell lineages investigated in this study also participated in heterologous CD45+ conjugations that did not involve uNK cells (Supplemental Fig. 3A-D). Analyses of these uNK cell-independent heterologous conjugations focused on T cell interactions with CD11c+ DCs. Although some murine decidual DCs express CD8a [40–42], coexpression of the 2 markers had a frequency of <1% in our WM-IHC, permitting analyses using costaining with anti-CD45 FITC, anti-CD11c PE, and either anti-CD4 (Supplemental Fig. 3E) or anti-CD8 APC antibodies (Supplemental Fig. 3F). No conjugations were observed between CD11c+ DCs and either T cell subset at gd 6.5 (Supplemental Fig. 3E, F) or 8.5. Thus, although heterologous conjugates not involving uNK cells are frequent between CD45+ decidual leukocytes, these conjugates are not between T cells and CD11c+ DCs. Because of the low frequencies of CD4+ cell homologous and heterologous conjugates and of Foxp3 expressing cells at these time points (2.5–3.2% by FACS; data not shown), the participation of regulatory T cells in conjugate formation could not be estimated.

DISCUSSION

The goal of this study was to determine the frequency, time course, and composition of leukocyte conjugates in early mouse decidua. Although CD45+ leukocytes are present in the uterus before implantation and throughout early decidua, conjugated cell pairs appear only in decidua basalis, the site of leukocyte enrichment, during early to midpregnancy in mice. WM-IHC provides a more sensitive method for conjugate visualization than IHC studies of paraffin-embedded sections that cannot confirm direct leukocyte–leukocyte contact [43], because of the possible transient nature of such conjugates [35]. Leukocyte conjugates were present infrequently in the pre- and peri-implantation
and macrophages, were the second most populous leukocytes previously reported using other techniques. APCs, including DCs analyzed. The other leukocyte lineages had frequencies that were highly proliferative, as assessed by the presence of homologous and IHC studies [50]. Both uNK cell lineages appeared to be reactive to Ly49C/I or DBA lectin [17, 18]. These findings are consistent with data from previous FACS analyses [4] and IHC studies [50]. Both uNK cell lineages appeared to be highly proliferative, as assessed by the presence of homologous conjugates, which were rare in the other leukocyte lineages analyzed. The other leukocyte lineages had frequencies that were stable between gd 6.5 and 8.5 and at levels similar to those previously reported using other techniques. APCs, including DCs and macrophages, were the second most populous leukocytes [4, 5, 51], whereas T cell frequencies were low [8, 9].

Throughout early gestation, conjugations were observed between Ly49C/1 and DBA+ uNK cells. Both uNK cell subsets were present in the uterus from gd 5.5 to 12.5 and had relatively similar distribution patterns [12]. Indeed, DBA- and DBA+ uNK cells frequently resided adjacent to each another in histologic sections of the decidua basalis (Fig. 4) [12], although this proximity was not observed within the mesometrial lymphoid aggregate of pregnancy. Heterologous uNK/uNK cell conjugates may represent important intralineage interactions between gd 6.5 and 8.5, because they are sustained as uNK cell subset dominance shifts and they are equivalent or greater in frequency than the interactions with any other leukocyte lineage. ILCs are currently undergoing intensive reclassification studies. Not only are tissue resident NK cells recognized as distinct from conventional NK cells in many tissues, including virgin uterus [13], but ILCs have been transcriptionally separated into ILC-1, -2, or -3 [52]. The position of uNK cells within this newer classification system is not yet fully understood, and it remains possible that DBA- and DBA+ uNK cells are distinct cell lineages [53] whose conjugation may be regulatory or stimulatory. An alternate hypothesis is that division of DBA- uNK cells gives rise to DBA+ uNK cell progeny. Absence of established methods to support mouse uNK cell proliferation in culture makes the latter hypothesis difficult to assess at present.

APCs of the DCs or macrophage lineage appeared to be the primary partners of both Ly49C/1 and DBA+ uNK cells in early gd 6.5 mouse decidua basalis. In late CD11c+ lineage development, certain cells gain CD8α expression. CD8α+ DCs (lymphoid lineage) help direct the development of Th1 type CD4+ helper T cell responses and promote cytotoxic T cell responses from CD8+ T cells [40]. Conversely, the CD8α- myeloid lineage DCs drive Th2 type CD4+ T cell responses. A study of mouse decidual DCs between gd 1.5 and 17.5 reported a low number of CD11c+CD8α- DCs with a peak frequency occurring at gd 5.5. A much higher number of CD11c+CD8α+ DCs were present across this time [51]. We found a virtual absence of CD11c+CD8α+ DCs in early decidua and conclude that uNK cells conjugate with myeloid DCs. Interactions between decidual NK cells and DCs have been observed somewhat later in mouse and human pregnancies [43, 54-58] and they are seen in other organs [59], where a variety of outcomes are described. Because no decidual cell death could be detected in the decidua basalis, early decidual DC–NK cell interactions are more likely to result in cytokine production, for example trans-presentation of IL15, which may drive either uNK cell proliferation [60] or DC maturation [61]. Contact interactions mediated by receptor–ligand interactions are also recognized between monocytes/macrophages and NK cells, often in the context of enhancing NK cell responses to tumors or microbial pathogens [62]. Interactions between these lineages have not been well studied in either mouse or human decidua, but it is postulated that they dampen uNK cell cytotoxicity [55, 56, 63]. The recent documentation of trogocytosis by human uNK cells [64] enlarges the scope of potential outcomes for uNK cells that may result from interactions with other cell types. Published evidence also supports that uNK/DC interactions are regulatory for other cell lineages including T cells [65, 66].

By gd 8.5, uNK cell partners in conjugates shift away from APCs toward T cells. This timing is inconsistent with a role for T cell conjugation in either activation or deactivation of uNK cells, since uNK cells express CD31 by gd 6.5 and do not show degenerative signs until gd 12.5 [50]. Many model systems, however, show cross-regulatory activities between NK cells and T cells. For example, activated NK cells limit T cell expansion after hematopoietic stem cell transplantation by cytokine-based rather than lytic mechanisms [67-69]. Also, NK cell–T cell interactions are often addressed in the context of microbial infections or carcinogenesis, where NK-cell-mediated killing of activated CD4+ or CD8+ T cells is reported and associated with transient T cell acquisition of NK cell targets during the activation process [70, 71]. Reciprocally, CD4+CD25+ T-regulatory cells suppress NK cell functions [72, 73]. The absence of detectable cell death in the decidua basalis (Supplemental Fig. 2) is consistent with studies in humans, which found that uNK cells lack the ability to polarize perforin granules to their surfaces [74] and suggests different outcomes for NK cell–T cell interactions. Regulation of T cell activity is considered essential for promotion of fetal tolerance [9, 58]. Our data, however, suggest that neither CD8+ nor CD4+ T cells are primed by APCs, particularly CD11c+ DCs, in the early decidua basalis, because no conjugations are detectable between these lineages, at least from gd 6.5 to 8.5, when the maximum number of immune synapses are found. Although uterine draining lymph nodes are sites in which paternal antigen presentation occurs [42], conjugation of T cells by decidual CD45+ cells may have distinctly different physiologic roles. One role that should be considered is in the modulation of blood pressure, which declines in mice from...
gd 5.5 to 9.5 and then rebounds to baseline [75]. Key roles for several CD45+ cell lineages are described in vascular regulation, with regulatory bypass culminating in hypertension.

The decidual leukocyte interactions described in this study reflect events occurring immediately after blastocyst implantation. This time of initial decidual differentiation and maturation is not yet captured in decidua culture systems [76, 77]. Multiple lineages of CD45+ cells appear to interact with each another and with blood vessels [4] before significant trophoblast invasion into the decidua basalis. The outcomes from these interactions and their importance for optimizing placental bed development to support pregnancy are important for continued study.

AUTHORSHIP

A.M.F. conducted all experiments, analyzed all of the data, prepared the figure plates, and wrote the manuscript. B.A.C. designed the experiments, reviewed all of the data, and contributed to preparation and editing of the manuscript.

ACKNOWLEDGMENTS

This study was supported by Natural Sciences and Engineering Research Council program. The authors thank Dr. Patricia Lima, Ottawa for sharing her initial observations regarding the specificity of LY49C/I in WM-IHC and Andra Banete, Mackenzie Redhead, and Matt Gordon of Queen’s University for helpful discussions and technical assistance.

DISCLOSURES

The authors declare no conflicts of interest.

REFERENCES

Uterine natural killer cell partnerships in early mouse decidua basalis

Allison M. Felker and B. Anne Croy

J Leukoc Biol published online March 21, 2016
Access the most recent version at doi:10.1189/jlb.1HI0515-226R

Supplemental Material
http://www.jleukbio.org/content/suppl/2016/03/21/jlb.1HI0515-226R.DC1

Subscriptions
Information about subscribing to *Journal of Leukocyte Biology* is online at
http://www.jleukbio.org/site/misc/Librarians_Resource.xhtml

Permissions
Submit copyright permission requests at:
http://www.jleukbio.org/site/misc/Librarians_Resource.xhtml

Email Alerts
Receive free email alerts when new an article cites this article - sign up at
http://www.jleukbio.org/cgi/alerts