Reactive oxygen species-mediated bacterial killing by B lymphocytes

István Kovács,∗† Magdalona Horváth,∗† Árpád Lányi,‡ Gábor L. Pethő,∗†,1 and Miklós Geisz†,1,2

*Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; †Lendület Peroxidase Enzyme Research Group of Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary; 2Department of Immunology, University of Debrecen Medical and Health Science Center, Debrecen, Hungary

ABSTRACT
Regulated production of ROS is mainly attributed to Nox family enzymes. In neutrophil granulocytes and macrophages, Nox2 has a crucial role in bacterial killing, and the absence of phagocytic ROS production leads to the development of CGD. Expression of Nox2 was also described in B lymphocytes, where the role of the enzyme is still poorly understood. Here, we show that peritoneal B cells, which were shown recently to possess phagocytic activity, have a high capacity to produce ROS in a Nox2-dependent manner. In phagocytosing B cells, intense intraphagosomal ROS production is detected. Finally, by studying 2 animal models of CGD, we demonstrate that phagocyte oxidase-deficient B cells have a reduced capacity to kill bacteria. Our observations extend the number of immune cell types that produce ROS to kill pathogens.

J. Leukoc. Biol. 97: 000–000; 2015.

Introduction
When exposed to pathogens, phagocytic cells, such as neutrophil granulocytes or macrophages, produce large quantities of microbicidal ROS that have a pivotal role in controlling infection. The capacity of B cells to produce ROS is of immune cell types that produce ROS to kill pathogens [1, 2]. Upon stimulation by diverse agonists, the cytosolic components translocate to the membrane-bound cytochrome, initiating the production of superoxide. The cytochrome component of the oxidase itself is a dimer, formed by Nox2 (formerly known as gp91phox) and p22phox. The fundamental role of phox in host defense is well illustrated by the serious clinical picture of CGD, which develops in the absence of phagocytic ROS production [3]. It has been known for a while that the expression of phox components is not restricted to professional phagocytes, but B cells and many nonleukocytic cells also express components of the oxidase [4–8]. The capacity of B cells to produce ROS in a Nox-dependent manner is much less than that of neutrophils. For example, Epstein-Barr-immortalized B lymphocytes were found to produce 100-fold less superoxide than human neutrophils [5]. The function of Nox-generated ROS production in B cells remains poorly understood [9], although a role in MHC class II antigen presentation was recently proposed [10]. As H2O2 was described to amplify tyrosine phosphorylation-dependent signaling through the inhibition of protein tyrosine phosphatases [11], a potential role for Nox-derived ROS in signal transduction has been proposed [9, 12]. However, although activation of the BCR initiates ROS generation, early events of signaling through the BCR were found to be essentially unaltered in the absence of an active phox [9]. Importantly, today, even naive B cells cannot be considered as a uniform population. In the mouse, it is widely accepted that at least 2 major B cell lineages exist [13, 14]. Whereas in the spleen, essentially the “conventional” B-2 cells are present, the dominant B cell of the PerC is the “innate-like” B-1 cells. Recently, 3 independent reports described the capacity of mouse B-1 cells to phagocytose and kill bacteria [15–17]. These findings have prompted us to test whether bacterial killing by B cells occurs in a Nox-dependent way. In this report, we show that peritoneal B cells have a higher capacity to produce superoxide than that of Sp B lymphocytes. We also demonstrate that in phagocytosing B cells, Nox2 produces ROS around engulfed bacteria. Finally, we present evidence that B cells lacking Nox2 or p22phox have a restricted ability to kill engulfed pathogens.

MATERIALS AND METHODS
Chemicals
Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Mice
The nmf333 mouse strain carrying a mutation in the cyba gene was purchased from The Jackson Laboratory (Bar Harbor, ME, USA). Nox2-deficient animals [18] were a kind gift from Professor Ralf P. Brandes (Goethe University, Frankfurt, Germany). Age- and sex-matched C57Bl/6J animals

1. These authors contributed equally to this work.
2. Correspondence: Dept. of Physiology, Faculty of Medicine, Semmelweis University, P.O. Box 259, H-1444 Budapest, Hungary. E-mail: geisz@eok.sote.hu
were used as controls, and all Nox2-deficient mice were males (Nox2^{-/-}). Mice had access to regular chow and water ad libitum.

Antibodies
We used the following antibodies in our experiments: anti-Nox2 (NL7) mouse mAb (Santa Cruz Biotechnologies, Santa Cruz, CA, USA) and anti-p22^{phox} 1G7 mouse mAb (generously provided by François Morel, Grenoble University, Grenoble, France). Affinity-purified rabbit polyclonal anti-Hv1 antibody [19], anti-actin mouse mAb (Sigma-Aldrich).

In immunocytochemistry experiments, Nox2 was detected with Alexa Fluor 488-labeled NL7 antibody (AbD Serotec, Oxford, United Kingdom), whereas antibody [19], anti-actin mouse mAb (Sigma-Aldrich).

Isolation of PerC and Sp B lymphocytes
Splenocytes and PerC cells were obtained after appropriate euthanasia, as described by Parra et al. [15], with minor modification (details given in Supplemental Methods). To separate B cells, CD19 microbeads were used (Miltenyi Biotec).

Immunoblotting
Cells were lysed in Laemmli buffer containing 5% v/v 2-mercaptoethanol and 2% PMSF. Samples were run on 10% polyacrylamide gel and blotted onto a nitrocellulose membrane. Nonspecific binding of antibodies was attenuated by use of 5% skim-milk powder in PBS + 0.1% Tween 20 for 1 h. The membrane was incubated with the primary antibody for 1 h, and then HRP-conjugated secondary antibody was added, followed by detection of chemiluminescence on Fuji RX films by use of an ECL Western blotting analysis system (GE Healthcare, Little Chalfont, United Kingdom).

Immunocytology
For immunocytochemical experiments, 10⁴/ml cells were resuspended in RPMI-1640 medium containing 10% FBS. Expression of Nox2 was detected in quiescent PerC cells or in purified PerC B cells (for subcellular localization of Nox2). Cells were spun onto slides with cytospin centrifugation and were finally dried onto glass slides. In other experiments (e.g., see Fig. 3B), sorted PerC B cells were subjected to cytospin centrifugation directly after phagocytosis and then fixed with 4% paraformaldehyde. In all cases, cells were mounted by us of Mowiol 4-88 antibody reagent and subjected to transmission and fluorescent microscopy immediately.

Assessment of intracellular killing ability
The bactericidal activity of B cells was examined by use of gentamicin-protection assay, as described previously [17]. In brief, magnetically sorted B cells (10⁵/ml resuspended in RPMI-1640 medium containing 10% FBS) from wild-type and p22^{phox} or Nox2 KO mice were incubated with viable S. aureus (ATCC code: 29213) at a bacterium:cell ratio of 10:1 for 1.5 h. The medium was then supplemented with 5 µg/ml gentamicin. Cells were harvested 0, 1.5, 4.5, and 18 h after gentamicin addition. All incubations were carried out at 37°C in 5% CO₂. Lymphocytes were then washed twice in 500 µl sterile PBS and lysed with 900 µl sterile-distilled water for 10 min, and then osmolarity was normalized with 1.8% NaCl solution. Lyssates were serially diluted and spread onto Luria-Bertani agar plates, followed by 12 h incubation at 37°C and colony counting.

Statistical analysis
All data are average ± SEM; Mann-Whitney U-test was applied to test statistical significance, unless otherwise specified. Statistical calculations were performed by use of Statistica software (StatSoft, Tulsa, OK, USA).

RESULTS AND DISCUSSION
Peritoneal B cells produce high amounts of superoxide in a Nox2-dependent manner
We compared the superoxide-producing capacity of PerC and Sp B lymphocytes isolated from mouse. Both B cell preparations showed some spontaneous superoxide production, and this response was substantially higher in peritoneal B cells (Fig. 1A and B). When calculated over a 30 min period, superoxide production of peritoneal B cells was ~5 times higher than that of Sp B lymphocytes. BCR activation with anti-IgM F(ab')₂ increased the ROS response in both cell populations, but the stimulated superoxide production of peritoneal B cells was much higher (Fig. 1A and B). The higher ROS production of peritoneal B cells was not a result of the presence of a contaminating cell population, as neither neutrophils nor macrophages produced superoxide when they were exposed to anti-IgM F(ab')₂ (Supplemental Fig. 1). Furthermore, in pilot studies, unsorted PerC cells displayed a smaller response than purified B cells (data not shown).

As B lymphocytes have been shown to express components of phox [5], we hypothesized that different expression level of oxidase components may explain the observed difference in the ROS response. We used Western blot to detect Nox2 and p22^{phox} proteins in peritoneal and Sp B cells. Indeed, compared with Sp B cells, expression levels of Nox2 and p22^{phox} were strongly elevated in peritoneal B cells (Fig. 1C). As B cells have been shown to express components of hv1 during intense ROS production [20], and the reduction of BCR-dependent ROS production had been reported in hv1-deficient
B cells [12]. Interestingly, the amount of Hv1 was found to be higher in Sp B cells (Fig. 1C and D), indicating that the ability of ROS production does not parallel the Hvl expression level in B cells. We next asked whether phox was responsible for the BCR-induced superoxide production. Peritoneal B lymphocytes were isolated from a Nox2 KO mouse or from animals carrying a point mutation in the cyba gene encoding p22phox (nmf333 strain). This latter mutation has been shown to lead to a complete loss of p22phox protein with the consequent absence of phagocytic activity [21]. Figure 2A demonstrates that in peritoneal B cells prepared from Nox2-deficient animals, neither components of the cytochrome complex could be detected. Peritoneal B cells prepared from nmf333 animals had no detectable p22phox expression, and their Nox2 content was seriously reduced (Fig. 2A). This result is in agreement with earlier observations, where the presence of Nox2 and p22phox was found to be essential for the formation of a stable cytochrome complex [22]. Superoxide production was completely absent in Nox2- and p22phox-deficient cells (Fig. 2B), thus confirming the essential role of phox in the superoxide release by peritoneal B cells.

Intracellular localization of Nox2 in resting and phagocytosing B cells

Although Nox2 expression had already been described in B lymphocytes, the subcellular distribution of the protein has not yet been examined. We used immunocytochemistry to locate Nox2 in peritoneal B cells. Confocal microscopic analysis revealed that Nox2 was present in IgM-positive cells (i.e., B cells; Fig. 2C), although at a lower level than in IgM-negative cells (macrophages; see below). In purified B cells, Nox2 localized near the cell surface (Fig. 2D). Specificity of the signal was confirmed by staining cells from Nox2 KO animals (Fig. 2C and Supplemental Fig. 2).

B Cells isolated from the PerC or liver were recently shown to phagocytose and kill bacteria. We wanted to know if Nox2 participates in this process. Peritoneal B cells were exposed to fluorescently labeled S. aureus, and intracellular localization of the bacteria and Nox2 activity was analyzed by fluorescence microscopy. In agreement with previous reports, only a fraction of B cells (<10%) showed phagocytic activity, whereas the phagocytic activity of wild-type and Nox2 KO cells was essentially the same (as shown in Fig. 3C). To follow the ROS formation in the phagosome, B cells were exposed to NBT. In phagocytosing wild-type cells, NBT-formazan deposits colocalized with engulfed bacteria (Fig. 3A and B), whereas no precipitates were observed in p22phox- or Nox2-deficient cells (Fig. 3A and B).

phox Actively participates in bacterial killing by B cells

As the previous experiments suggested the presence of Nox2 activity at the phagosomes, we wanted to know if Nox2-derived ROS contributes to bacterial killing. We studied the microbicidal activity of peritoneal B cells in a gentamicin-protection assay that was successfully used previously to assess the antimicrobial activity of B cells [15–17]. We compared the antimicrobial activity of wild-type, Nox2-deficient, and p22phox-deficient cells, respectively. As shown in Fig. 3C, the intracellular survival of bacteria in Nox2- or p22phox-deficient cells was significantly higher than in wild-type cells. These observations indicate that phox has an active role in killing engulfed bacteria by B cells.

B Cells of fish and amphibians have been described to phagocytose particles and bacteria [23]; however, mammalian primary B cells were originally not considered phagocytic [23]. Recently, 3 groups reported that B-1 cells, isolated from the PerC or from the liver, have the ability to phagocytose and kill bacteria, including S. aureus and Escherichia coli [15–17]. In this work, we have demonstrated that the microbicidal ability of B cells is dependent on a functional Nox. To our knowledge, our work is the first to assign antimicrobial function for Nox2-derived ROS in B lymphocytes. B-1 cells represent the dominant B cell population in the PerC [13, 14]. These cells are part of the innate immune system and are characterized by the ability to produce natural antibodies. They also share some features with macrophages, including the ability to phagocytose pathogens and to present exogenous antigens. We
found that peritoneal B cells have much higher capacity to produce ROS than Sp B lymphocytes, and this difference is well explained by their higher Nox2 and p22phox content. The larger capacity of ROS production is a previously unrecognized feature that also supports their similarity to macrophages. Nevertheless, the total ROS (H2O2) production of PerC B cells in an Amplex red assay was, on average, 18 times less than that of CD19+/PerC cells (mainly macrophages) upon PMA stimulation for 40 min [unpublished results]. Together with their limited phagocytosing and slow killing ability, this observation makes PerC B cells unlikely to play a major role in bacterial clearing of the PerC.

When produced at low amounts, ROS are thought to participate in signaling. Among different ROS, H2O2 seems to be a particularly important molecule in signal transduction [24, 25]. Several potential targets of H2O2 have been identified over the years; however, the jury is still out on whether their oxidative modification by H2O2 is an integral part of signaling pathways. Based on genetic evidence, BCR-induced ROS production has been assigned to the Nox2 system [4]; however, the early events of BCR-induced signaling of Nox-deficient lymphocytes were found to be essentially unaltered [9]. According to the data of Wheeler and Defranco [9], BCR stimulation of primary B cells initiates ROS production in 2 waves, of which Nox2 was shown to mediate only the 1st phase. The 2nd, prolonged phase of the ROS response may originate from mitochondria, and it seems to be required for optimal B cell activation and proliferation. On the other hand, in a different study, Nox2-dependent ROS production, induced by BCR ligation, was described to modulate cell proliferation through the regulation of cyclin-dependent kinase inhibitor 1B expression [26]. The larger ROS-producing capacity of PerC B cells compared with their Sp counterparts might possibly be a result of the higher number of B-1 cells in the peritoneal fluid than in the spleen and may be needed for killing of ROS-sensitive bacteria to enable efficient presentation of their antigens. Additionally, intense phox activity around engulfed bacteria in PerC B cells may play a role in

Figure 2. Superoxide release of PerC B cells requires functional phox. (A) Immunoblot analysis of Nox2 and p22phox expression in wild-type, Nox2 KO, and p22phox KO cells. Actin signal serves as loading control. (L), Mr marker. (B) Extracellular superoxide generation of anti-IgM F(ab)'2-stimulated PerC B cells from wild-type, p22phox KO, and Nox2 KO mice (n = 3 for each curve). (C) Expression of Nox2 in IgM+ (i.e., BCR+) and IgM− wild-type and Nox2-deficient PerC cells. Wild-type and KO cells were obtained and labeled in parallel. Image recording and off-line background correction and linear enhancement of the green and red channels were performed the same way. (D) Cellular localization of Nox2 in wild-type, quiescent PerC B cells examined with confocal microscopy. Only the non-nuclear signal is specific for Nox2 (Supplemental Fig. 2). Original scale bars, 5 μM (left); 2 μm (right).

Figure 3. phox is required for phagosomal ROS generation and bacterial killing in PerC B cells. (A) Superoxide release into phagosomes was detected by NBT test. Cells were incubated with Alexa Fluor 594-labeled S. aureus (red), followed by labeling the common light chains of cell-surface IgG (i.e., BCR) with Alexa Fluor 488-labeled anti-mouse IgG (green). Formation of massive deposits of dark NBT-formazan around engulfed bacteria was almost always present in phagocytosing wild-type PerC macrophages (larger, BCR+ cells) and occasionally in wild-type PerC B cells (smaller, BCR− cells) but never in any p22phox-deficient cell type. (B) Purified, wild-type PerC B cells, but not their Nox2 KO counterparts, display NBT-formazan deposits. Similar results were obtained by use of bacteria without any surface labeling (Supplemental Fig. 3). Original scale bars, 15 and 5 μm for A and B, respectively. (C) Results of gentamicin-protection assays testing intracellular killing capacity of wild-type and p22phox KO (left) and Nox2 KO (right) cells (n = 3 for all curves; *P < 0.05).
optimizing phagosome pH for antigen presentation, as had been shown for dendritic cells [27]. Our results may also have clinical significance, as the finding of defective bacterial killing by oxidase-deficient B cells reveals a previously unrecognized feature of CGD. Interestingly, a previous report has already suggested that B cell physiology might not be normal in CGD, as a serious reduction in the number of CD27+ B cells in CGD patients [28]. The decreased number of CD27+ B cells in CGD suggests a role of Nox in memory cell formation. Interestingly, human B-1 cells, which were identified as a CD27+, CD43+ cell population, share the CD27 surface antigen with CD27+ B cells in CGD. Griffin and co-workers [29] proposed that some features of memory B cells (such as potent allogenic T cell stimulation), in fact, may be linked to B-1 cells [9].

Future experiments performed on lineage-specific KO mice should determine whether the altered antimicrobial activity of B-1 cells contributes to the pathogenesis of CGD.

AUTHORSHIP

I.K. performed experiments, analyzed data, and wrote the manuscript. M.H. performed experiments. A.L. designed experiments. G.P. designed and performed experiments, analyzed data, and wrote the manuscript. M.G. designed experiments, analyzed data, and wrote the manuscript.

ACKNOWLEDGMENTS

This work was supported by grants from the Hungarian Research Fund (OTKA K106138, K81676, K109444), from the National Office for Research and Technology (OMFB-01680/2009), and by a “Lendület” grant from the Hungarian Academy of Sciences. A.L. is also supported by the TAMOP 4.2.2.A-11/1-KONV-2012-0023 “VÉD-ELEMENT” project, which is implemented through the New Hungary Development Plan and cofinanced by the European Social Fund and the European Regional Development Fund. The authors are grateful to Beáta Molnár, Tünde Szosznay, and Anikó Rajki for technical assistance. The authors also thank Dorottya Kovács for helpful discussions.

DISCLOSURES

The authors declare no conflict of interest.

REFERENCES

23. Kovacs et al. ROS-dependent bacterial killing by B cells

KEY WORDS: NADPH oxidase, chronic granulomatous disease, phagocytosis, NOX2 – p22phox

www.jleukbio.org

Volume 97, June 2015 Journal of Leukocyte Biology 5